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Introduction 

The majority of research in designing ultra- 
reliable, fault-tolerant systems has been targeted to- 
ward a civil air transport application with a 10-hour 
mission time and perfect maintenance between mis- 
sions. When considering the design of systems for 
longer mission times such as a 5-year space mission, 
it is tempting to try to modify a current architecture 
by adding additional sparing capability (additional 
spare components). However, a long mission time 
can have a surprisingly devastating impact on the 

I reliability of a system. These effects are even more 
apparent for a parallel-processor architecture because 
of the multiplicity of system components. 

Over a very long mission time, a parallel-processor 
system with a high number of processors must be 
expected to incur large numbers of component fail- 
ures. Several fault tolerance design techniques that 
are commonplace in today’s fault-tolerant architec- 
ture designs are unacceptable for highly parallel pro- 
cessors over long mission times. These large numbers 
of component failures can also have a profound effect 
on the reliability of a given architecture topology. 

The target application investigated in this pa- 
per is a Strategic Defense Initiative (SDI) defense 
satellite requiring 256 processors organized in a par- 
allel manner to provide the required computation 
throughput. The satellite application analyzed in 
this study is only one of the hundreds of platforms 
that would be needed to implement the SDI defense 
system. A reliability requirement has not yet been 
set for the SDI, and the number and configuration 
of platforms is not yet known. For the purposes of 
this study, the reliability goal assumed is a proba- 
bility of failure of the total system of less than 0.01 
over 5 years, a number often mentioned in connec- 
tion with the SDI system. Assuming that the plat- 
form being analyzed in this study is 1 of 100 satel- 
lite platforms, the reliability requirement for a 
single platform can be approximated as a probabil- 
ity of failure of less than 0.01/100 = 0.0001 over a 
5-year mission. Fully loaded operation of the system 
during engagement, which will require the 256 par- 
allel computations per platform, will last 30 minutes 
maximum (from the first missile launch until it no 
longer matters). The probability of system failure 
during engagement should be less than lo-’ for a 
single platform. 

Survivability of the system under nuclear radia- 
tion or other attack conditions will not be consid- 
ered. Such an attack would probably subject the 
system to a high number of transient or even per- 
manent faults, significantly affecting the system re- 
liability. However, the characteristics and effects of 

attacks that the system is likely to encounter are not 
yet well-understood, and the radiation shielding for 
the system has not yet been determined. 

The environment for the mission will be a space 
platform. A high rate of transient faults must be 
expected in the space environment. Transient faults 
will be assumed to affect only a single component at 
a time; thus, multiple correlated faults, such as those 
caused by Sun spots or other radiation, will not be 
modeled. Only permanent and transient faults will 
be considered. 

Hardware design faults and software faults (some- 
times referred to as “generic faults”) will not be con- 
sidered in this study. Unless dissimilar redundant 
hardware and software components are used, a sin- 
gle design fault can cause system failure by causing 
simultaneous errors across multiple redundant com- 
ponents. Ricky W. Butler and George B. Finelli of 
the Langley Research Center have shown that it is 
infeasible to assure that the probability of system 
failure due to generic faults is negligible through the 
use of estimation techniques for a system of any com- 
plexity. Validation that the system design is correct 
through formal proof methods is extremely difficult. 
However, that topic is outside the scope of this paper. 

This paper describes the basic design issues of 
fault tolerance in the context of the SDI defense 
satellite application. The fault tolerance potentials 
of a number of current and proposed fault-tolerant 
parallel-processor architectures are briefly discussed, 
and the Fault Tolerant Parallel Processor (FTPP) 
under development at the Charles Stark Draper Lab- 
oratory (CSDL), Inc., is evaluated in some detail. 
A methodology is then presented for designing a 
preliminary configuration of a parallel-processor ar- 
chitecture to meet reliability and performance re- 
quirements. The methodology is demonstrated by 
developing and evaluating a preliminary configura- 
tion of the FTPP to meet the mission requirements. 
Finally, several alternative approaches to achieving 
reliability over long missions are discussed. 

Basic Fault Tolerance Features 
A number of basic issues of fault tolerance that 

are vital to the design of a fault-tolerant system are 
described in this section. A candidate architecture 
must be evaluated to ensure that it has the potential 
for meeting the reliability as well as the performance 
requirements of the mission. If a given architecture 
has any inherent feature that is contrary to any of 
these basic fault tolerance requirements, then the 
architecture must be either altered to provide for 
fault tolerance or discarded as being inherently not 
fault tolerant. 



Redundancy 

An execution of the same code on two or more 
processors (referred to as “redundancy”) is used to 
detect and correct the effects of faults before they 
propagate errors into the system. Reliability cal- 
culations are based on the assumption that the re- 
dundant computations are performed independently; 
that is, a fault affecting one of the redundant com- 
putations must not be able to cause an error in an- 
other computation. To enforce such independence, 
the computations must be performed on separate 
processors within separate fault-containment regions. 
Each fault-containment region must have its own in- 
dependent power supply and must operate indepen- 
dently of other fault-containment regions. Whenever 
data or system control information is passed between 
fault-containment regions, voting and fault masking 
must take place. If the assumption of independence 
between.computations is violated in the actual imple- 
mentation of the system, then the system built may 
have considerably lower system reliability than that 
calculated. 

Duplex redundancy is sufficient to detect errors, 
but triplex redundancy is needed to mask errors. Re- 
dundancy is very effective for fault detection and 
masking if all three computations are performed in 
exactly the same way on the same input and with 
the same intermediate system state values. Exact 
match voting can then be used to detect and mask 
errors. (In exact match voting, any value that is not 
bit-for-bit identical to the other values is considered 
incorrect.) The input values must be exchanged be- 
tween fault-containment regions and voted to ensure 
that the same input values are used by all proces- 
sors. If the processors are not executed in lock-step 
synchronization and are given differing input values 
or intermediate system state values because of sys- 
tem asynchrony, exact match voting can no longer 
be used, and the effectiveness of the fault detection 
and masking is significantly compromised. 

Byzantine Resilience 

Unfortunately, components do not always fail in a 
benign way. Components involved in communication 
between processors have been known to fail in very 
“malicious” ways, sending conflicting information to 
different parts of the system. This type of failure is 
often very difficult to isolate to the failed component, 
because if the system does not have enough redun- 
dancy to isolate this type of failure properly, a proces- 
sor receiving the faulty information may appear to be 
faulty to the rest of the system. A fault-tolerant sys- 
tem that can tolerate any arbitrarily malicious sin- 
gle fault is termed “Byzantine resilient,” named for 

the Byzantine Generals’ Problem of generals in the 
Byzantine army trying to authenticate messages that 
may be carried by traitorous messengers (Pease et al. 
1980). 

Malicious failures have been seen in laboratories, 
and they have even been recorded in flight in which 
a non-Byzantine-resilient fault-tolerant system was 
caused to fail (Lala et al. 1986). There is currently 
no estimate of how likely these malicious failures are. 
However, we can estimate how unlikely they would 
have to be for us to be able to ignore them in our 
system design. To execute the 256 parallel compu- 
tations of the application with the minimum duplex 
redundancy would require a parallel-processor sys- 
tem with at least 512 processors. The probability of 
a single-point failure of each of those 512 processors 
must be less than 4 x per hour to achieve a 
system probability of failure of less than over 
a %-hour mission. Given a permanent failure rate 
of 5 x per hour and a transient failure rate of 
5 x per hour, the total rate of failure for a pro- 
cessor is 5.5 x Assuming that malicious fail- 
ures are the only single-point failures possible, then 
the probability that each of those failures is malicious 
must be less than 

4 x per hour 
5.5 x per hour 

= 7.272 x lov6 

Thus, assuming that malicious failures will not h a p  
pen means assuming that less than 1 out of every 
1 375 000 processor failures will be malicious. Addi- 
tionally, errors made in the design of the system can 
manifest themselves as malicious failures. Malicious 
failures may be unlikely, but it is expected that they 
would not be that unlikely. Therefore, Byzantine re- 
silience should be a requirement for the architecture. 

In order for a system to provide Byzantine re- 
silience from any single Byzantine fault, there must 
be at least four fault-containment regions partici- 
pating in each message transaction, those message 
transactions must occur over disjoint communica- 
tion paths to ensure independence, there must be at 
least two rounds of data exchange among the fault- 
containment regions for each message transaction, 
and the clock skew among the fault-containment re- 
gions must be bounded and the bound known. An 
excellent description of possible causes of Byzantine 
faults as well as a discussion of how to design a 
Byzantine-resilient parallel processor may be found 
in Friend (1986). 

The need for Byzantine resilience can have a pro- 
found effect on the design of a fault-tolerant parallel- 
processor architecture. The network topology must 
be divided into separate fault-containment regions, 
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into and out of which no errors can propagate. Each 
computation must be performed in at least two s e p  
arate fault-containment regions; and whenever data 
values must pass between regions, they must be com- 
pared for fault detection. The communication be- 
tween the fault-containment regions performing the 
same computation must take place over distinct com- 
munication paths. If a fault-containment region no 
longer has three distinct communication paths leav- 
ing it, then the system is no longer Byzantine re- 
silient. The requirement for redundant computations 
to take place in separate fault-containment regions 
can make reconfiguration of complex, connection- 
limited topologies a difficult problem. The addi- 
tional requirements of Byzantine resilience signifi- 
cantly compound the difficulty. 

Synchronization 

If the multiple processors performing a redundant 
computation are synchronized, then the scheduler 
can set a maximum allowable time for completion 
of that computation. This provides a means for 
the system to determine whether a processor has 
actually failed or has just been slow to complete a 
computation. 

Failures of the synchronization system must not 
be able to propagate beyond fault-containment 
boundaries. Global clocking schemes are usually 
unsuitable because they present too high a proba- 
bility of single-point failure of the system. Much 
research has been conducted on synchronization 
methods for multiprocessor systems (Pease et al. 
1980; Krishna et al. 1985), and a survey of prov- 
ably correct synchronization techniques can be found 
in Butler (1988). Various methods range from peri- 
odic, loosely coupled synchronization to tightly cou- 
pled, lock-step synchronization between processors. 
Regardless of the method used, the synchronization 
system is likely to incur a significant overhead to the 
computational system, and this overhead must be 
considered when estimating the performance of the 
system. 

P 

Scheduling 

A distributed real-time executive must be devel- 
oped and validated to correctly perform scheduling of 
tasks in the presence of faults. The scheduling system 
must be validated to meet the real-time deadlines 
of the application. The use of data input values in 
tasks that are produced by other tasks greatly com- 
plicates scheduling by adding precedence constraints. 
The real-time executive must obey the fault tolerance 
requirements of voting and fault masking between 
fault-containment regions to maintain data int,egrity 

in the presence of faults. Thus, multiple copies of 
the system scheduler must exist on separate fault- 
containment regions and must vote on schedules or 
schedule changes. If the amount of parallelism of 
the system becomes degraded because of the removal 
of faulty processors from the configuration, the real- 
time executive must reassign the tasks among the 
remaining nonfaulty processors. 

Deadlock Protection 
A common failure mode of parallel-processing sys- 

tems is system deadlock caused by excessive paral- 
lelism of the computation. The type of deadlock dis- 
cussed in this section is somewhat different from the 
type of deadlock usually considered in fault- tolerant 
processing. Parallel-processing deadlock occurs when 
every processor in the system is executing a compu- 
tation that cannot be completed until it spawns a 
subprocess on another processor. Load balancing of 
the parallelism is usually accomplished using static 
parallelism provided before execution, dynamic par- 
allelism controlled by the operating system, or a com- 
bination of the two. A discussion of the two methods 
follows. 

Static parallelism is prescribed explicitly by the 
programmer or a compilerlike tool before execution 
of the program. If the system provides no deadlock 
protection or control during execution, then for each 
application program it must be shown that either 
system deadlock cannot occur even in the worst-case 
execution scenario or that the probability of dead- 
lock occurring is sufficiently small. Implementation 
of a given program in a manner such that it can be 
proven that its execution cannot lead to system dead- 
lock is at best extremely difficult and usually leads 
to inefficient use of system resources. The informa- 
tion necessary to determine the probability of system 
deadlock is usually unavailable before program exe- 
cution. Similarly, the information necessary to plan 
for optimal parallelism of the program is also usually 
unavailable before program execution begins. There- 
fore, static parallelism alone is usually inefficient and 
less reliable than dynamic execution or a combina- 
tion of the two techniques. 

A highly reliable parallel-processing system that 
dynamically controls parallelism must provide a 
means of system-deadlock avoidance or detection and 
a recovery that can be shown to reliably complete 
within an acceptable amount of time. Deadlock re- 
covery schemes are very similar to the schemes used 
by fault-tolerant systems using fault detection and 
rollback instead of fault masking. Deadlock recovery 
usually involves rollback of execution of at least one 
part of the computation to a previous checkpoint in 
the program at which the system state was recorded. 
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Storage of the system state at each checkpoint is ex- 
pensive in terms of memory and performance. Plac- 
ing of program checkpoints such that one rollback 
would always release enough resources to break a 
deadlock (given any arbitrary dynamic parallelism) 
would require excessive numbers of checkpoints. The 
deadline within which rollback and reexecution must 
be accomplished is dictated by the real-time perfor- 
mance requirements of the system. 

There are several met hods for handling deadlock 
avoidance or detection and recovery. Which method 
to use is an important design decision based on 
both the system architecture and the nature of the 
application program. Regardless of which method 
is used, the probability of deadlock causing system 
failure must be shown to be acceptably improbable. 
If deadlock avoidance is used, it must be shown either 
that the system will always avoid deadlock under 
all possible circumstances or that the system will 
avoid deadlock with an acceptably high probability. 
If detection and rollback are used, the probability 
that the system will miss a real-time deadline due to 
deadlock recovery must be shown to be acceptably 
low. 

Adequacy of Communication Network 

Another important aspect of the high-level per- 
formance analysis is the communication bandwidth 
between processors. Communication is often a major 
bottleneck in parallel processing. The system must 
be considered to have failed if redundant copies of all 
communications cannot be sent fast enough to satisfy 
the system performance requirements for the applica- 
tion. Over a long mission time, a large network with 
high numbers of components will incur large num- 
bers of faults. Serious performance degradation of 
the communication network in the presence of faults 
will undoubtedly be one of the most dominant failure 
modes of a highly parallel processor system. 

Preliminary research efforts have shown that 
current reliability-analysis tools appear to be in- 
adequate for analyzing networks. Reliability anal- 
ysis of the Integrated Airframe/Propulsion Control 
System Architecture (IAPSA) candidate architecture 
using the ASSIST program has resulted in extremely 
large semi-Markov models because of the combi- 
natoric explosion of states needed to analyze the 
input/output (I/O) network containing only 36 net- 
work nodes (Cohen et al. 1986). Although a number 
of model reduction techniques, such as model pruning 
and removal of nondominant failure modes from the 
model, have been developed for use with the ASSIST 
and SURE programs (Johnson 1988), an analysis of 
large networks in the same manner is probably out 

of the question. A study conducted by the Research 
Triangle Institute (RTI) under the direction of NASA 
concluded that the Computer-Aided Reliability Esti- 
mator (CARE 111) program cannot model large nodal 
communication networks (Baker and Scheper 1986). 
New tools or new methods for applying the current 
tools must be developed. 

The most promising approach is to build tools 
to separately analyze communication networks and 
interface these tools with current system analysis 
tools. Such a network analysis tool could be de- 
signed to take advantage of the regularity of struc- 
ture found in most networks to decrease the amount 
of computation involved. Little research has been 
conducted in this area, and the networks that have 
been analyzed have been small 1/0 networks rather 
than large, highly parallel communication networks. 

An analysis of networks is complicated by the 
large numbers of components and the resulting com- 
binatoric numbers of component failure combina- 
tions. Since a large network contains a large num- 
ber of components, significant numbers of component 
failures must be anticipated. In fact, given the reli- 
ability of components available today, a major per- 
centage of the components in the network would be 
expected to fail over a 5-10-year mission. The ma- 
jor validation issues are as follows: (1) ability of the 
network to correctly reconfigure after a number of 
failures, and whether such reconfiguration can be 
accomplished in time to meet real-time deadlines, 
(2) the number of failures that the network can tol- 
erate before large portions of the system become 
fragmented, and (3) the number of failures that the 
network can tolerate before network communication 
throughput degrades below the performance required 
for the application. 

Network Fault Detection, Isolation, and Reconfig- 
uration (FDIR) algorithms are often rather complex 
and very difficult to validate. Network FDIR (which 
typically consists of detecting that one or more fail- 
ures has occurred, isolating the component or com- 
ponents that are faulty, and determining a suitable 
new configuration that will isolate any faulty com- 
ponents from propagating further errors through the 
system) will provide correct and efficient communica- 
tion and will provide for the detection and tolerance 
of any later faults that might occur. Validation of 
an FDIR algorithm includes estimating the proba- 
bility that the system cannot perform all the above 
processes before the real-time deadline is exceeded. 
Failure to reconfigure successfully is likely to hap- 
pen when numerous failures occur in rapid succes- 
sion or when multiple failures are difficult to isolate 
to the failed components. When redundant proces- 
sors exchange information, it must be assured that 
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the redundant data communication takes place over 
independent communication paths, or else the system 
may be vulnerable to single-point failures. 

The probability that the network will become 
fragmented is a function of both the network topol- 
ogy and the reconfiguration algorithm. F'ragmenta- 
tion occurs when a portion of the system is still op- 
erating correctly but cannot contribute significantly 
to executing the application because communication 
with the rest of the system is lost or severely de- 
graded. If an insufficient number of links are present 
in the architecture or if these links are not used 
efficiently by the reconfiguration algorithm, then 
fragmentation of the network will be significantly 
probable over a long mission. Determining the frag- 
mentation probability of a given network would entail 
determining what fraction of a given number of 
faults would result in fragmentation of the network. 
The probability of fragmentation in the presence 
of each number of faults would then be multiplied 
by the probability of that number of faults occur- 
ring to determine the total probability of network 
fragment at ion. 

Degradation of communication performance be- 
low the required throughput may occur because of 
fragmentation, as discussed above, or may simply 
be the result of large numbers of failures widespread 
throughout the network. This is likely to be a domi- 
nant failure mode of the system if the network topol- 
ogy does not contain enough links or if the system has 
relatively inflexible reconfiguration. The number of 
communication links needed to achieve the through- 
put required for the application can be determined 
from performance-analysis simulation of the given 
network configuration. Message contention and rout- 
ing of communication are a function of the reconfig- 
uration algorithm and the history of locations of the 
faults that have occurred. With current capabilities 
there appears to be no way to accurately estimate 
the overall probability of degraded performance of 
the network, except for repeating performance sim- 
ulations for each possible fault-occurrence history of 
the network. 

The state of the art in reliability analysis of com- 
munication networks is far below what is needed 
for SDI parallel-processor applications. Current 
reliability-analysis techniques are impractical be- 
cause of the large numbers of components in a large 
network. Communication-network failures are likely 
t,o be a dominant failure mode of these systems. This 
effect will be shown in later sections when even the 
rough reliability estimates that are within the state 
of the art show the need for a very large number of 
spare communication links to provide a reliable com- 
munication network. Therefore, research into the re- 

liability analysis of communication networks should 
be given a high priority. 

State of the Art in Fault-Tolerant Parallel 
Processors 

This section contains a brief analysis of the cur- 
rent state of the art in the development of fault- 
tolerant parallel processors. The architectures con- 
sidered range from small-grained parallel processing 
(in which a single instruction might be assigned to 
another processor for execution) to large-grained par- 
allel processing (in which processor assignments are 
at the subroutine level or higher). 

Architectures Designed for Ultrareliability 

The JPL MAX. The MAX is a high-speed, 
general-purpose multicomputer designed at the 
NASA Jet Propulsion Laboratory (JPL) for space 
applications (Fhsmussen et al. 1987). The MAX 
(named for an Old English word meaning mesh) 
consists of modules connected by a global dual bus 
plus a point-to-point mesh network, or meshwork. 
The MAX operating system, HYPHOS, uses a large- 
grained data flow scheme of executing functions 
whenever the data tokens specified on a predeter- 
mined execution graph become available. The global 
bus (a carrier-sense, multiple-access, serial broadcast 
bus with collision detection) is used for synchroniza- 
tion and function execution assignment. The mesh- 
work, a point-to-point, circuit-switched network, 
provides the much higher bandwidth needed for 
transferring data tokens, or even the applications 
code, between modules. Because of the global bus ar- 
chitecture and centralized control, the designers have 
stated that the MAX is limited to a maximum of ap- 
proximately 30 processing modules. Thus, the MAX 
cannot even approach the performance capabilities 
needed for the SDI application. 

The CSDL FTPP. The Fault Tolerant Paral- 
lel Processor (FTPP) was designed by the Charles 
Stark Draper Laboratory (CSDL), Inc., to provide 
medium- to-coarse granularity parallel processing for 
applications requiring high throughput as well as 
very high reliability (Harper 1987). Out of all the 
architectures considered, a cluster architecture such 
as the FTPP appears to be the most likely candidate 
to provide the reliability and performance needed for 

detail and evaluated in a later section of this paper. 
The AIPS. The Advanced Information Process- 

ing System (AIPS) architecture being developed by 
the CSDL under the direction of the NASA Lang- 
ley Research Center consists of Fault Tolerant Pro- 
cessors (FTP's) distributed over a mesh network 

the target application. The FTPP is described in I 

I 
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I 

(Lala 1984; Schabowsky et al. 1984). The AIPS 
was designed to support loosely coupled distributed 
processing, not high-performance parallel processing, 
and its communication bandwidths and processing 

, performance would be unsuitable for the target ap- 
I 
I plication (Harper 1987). 

I Architectures Designed for High Performance 
, 

None of the existing high-performance architec- 
tures designed without considering high reliability 
could be modified to have the reliability needed for 
the SDI application. High reliability is not a feature 
that can simply be added to an existing architec- 
ture. An existing architecture can be made some- 
what more reliable by the addition of certain fault 
tolerance features, such as redundant computation or 
error-correcting codes. However, the provision of all 
the necessary fault tolerance features and the elimi- 
nation of all single-point failures would require a com- 
plete redesign of the architecture. Some of the most 
difficult issues in the design of a fault-tolerant par- 
allel processor are the containment of faults, the as- 
surance that redundant communications always take 
place over independent paths, the elimination of pos- 
sible single errors that could significantly degrade the 
performance of the communication network, and the 
guarantee of efficient and complete error detection 
and recovery. Since repair is unavailable in a space 
satellite environment, a system in which a single fail- 
ure brings down a large portion of the system would 
be infeasible for the target application. 

Some of the design features commonly used in 
parallel processors would be difficult to implement 
in a fault-tolerant manner. Several such features are 
discussed in the following subsections. 

Small-grained parallel architectures. Many ar- 
chitectures obtain maximum parallelism by issuing 
each instruction or small group of instructions to 
a different processor for computation. This small- 
grained parallelism approach would present serious 

order to contain the effects of a fault within one 
processing node, each communication would require 
the synchronization and voting of redundant com- 
putations. This would seriously impair the high 
bandwidth communication needed to make the small- 
grained parallelism efficient. Division of the system 
into fault-containment regions consisting of a num- 
ber of processors instead of single processing nodes 
would help this problem, but this division may be 
difficult to implement. At the other extreme, the 
system could be divided into only three or four fault- 
containment regions; however, the occurrence of only 
one failure in each region would cause system failure. 

I 

~ 
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I problems for developing a fault-tolerant machine. In 

The system would also have to provide protection 
from a faulty processor flooding the system with ar- 
bitrary messages to arbitrary locations. 

Application-specific functional checking. The 
results of many applications can be checked using 
application-specific functional checking. For exam- 
ple, Fast Fourier Transform (FFT) computations can 
be checked by special structures inherent to the com- 
putation. The accuracy to which the computations 
can be checked and the efficiency of the checking algo- 
rithm are highly dependent on the application. Addi- 
tionally, new checking algorithms must be developed 
for each application. When applicable, functional 
checking can be extremely efficient by providing pro- 
tection from any single chip failure with considerably 
lower hardware overhead. Thus, for applications in 
which the outputs can be efficiently tested for a p  
proximate correctness using functional checking, this 
approach is a very good one. However, many compu- 
tations do not lend themselves to functional checking. 

Shared-memory architectures. There are some 
major problems with designing a fault-tolerant par- 
allel processor using a shared-memory architecture. 
The system must be designed so that no single fault 
can possibly corrupt shared data. Consider an ar- 
chitecture with duplex-redundant shared memory. If 
the probability of system failure over the %-hour en- 
gagement mission is to be less than 1 x then the 
probability of failure of each of the memories would 
have to be less than 6.5 x The storage/retrieval 
of correct data in a copy of shared memory can be 
protected using error-correcting codes (ECC) to de- 
tect and correct errors due to transient faults and 
automatic reconfiguration of memory to avoid using 
locations corrupted by permanent faults. However, 
these techniques cannot keep the system from send- 
ing corrupt data to be stored in memory. If cor- 
rupt data should get into memory by faulty voters, 
for example, then when those data are subsequently 
used the system can detect that an error has occurred 
because the duplex memory contents will not agree 
when compared. However, the system will not be 
able to determine which of the two values is the cor- 
rect one. Thus, very high detection of faults must be 
provided in the voters. Each time that a data value 
is to be written into the shared memories, the duplex 
copies of the data value should be voted for the de- 
tection of processor failures. Unless the voters them- 
selves have rigorous self-tests, the data should then 
be read from the dual redundant shared memories, 
exchanged, and voted again by another set of voters. 
This process is time-consuming but necessary to pro- 
vide detection of faulty voters. The access to shared 
memory has always been a performance bottleneck of 
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shared-memory architectures. The additional over- 
head for two rounds of voting will significantly add 
to this serious performance bottleneck. The system 
must also provide enough spare voters to tolerate the 
large numbers of component failures expected over a 
long mission and a means for reconfiguration of the 
voters . 

Fixed hypercube architectures. The hypercube 
architecture, also called the binary k-cube, consists 
of N = 2k processors, with point-to-point communi- 
cation between each processor and its k neighbors. 
The N processors are assigned unique addresses cor- 
responding to the N, k-bit binary numbers such that 
any two processors with binary addresses differing by 
only one digit are neighbors. This addressing scheme 
allows rapid identification of neighboring processors 
and facilitates efficient mapping of regular-structured 
computations onto the hypercube architecture. This 
mapping scheme depends on every processor in the 
cube being nonfaulty. 

Thus, the features of the hypercube that make it 
an attractive topology for fast communication and 
message routing are the same features that make it a 
reconfiguration nightmare. A plethora of hypercube 
architectures are under development, and the major- 
ity of these systems have fixed communication links 
between the nodes in the network that make them to- 
tally unsuitable as fault-tolerant architectures. Since 
these fixed links have such an impact on the archi- 
tecture, hypercube architectures providing dynamic 
routing will be considered in the next section. 

The simplest form of reconfiguration of a hyper- 
cube is to remove the dimension of the cube con- 
taining a single faulty processor. Thus, a topology 
of 29 = 512 processors must degrade to a hypercube 
using only 2* = 256 processors after only a single 
processor failure. Clearly, it is unacceptable to throw 
out half the working processors after only one failure. 

More complicated strategies consist of provid- 
ing spare processors in the architecture to replace 
failed processors. Since rearrangement of the topol- 
ogy in response to a fault precludes the use of 

1 the attractive hypercube routing algorithms, the 
spare must be physically located near the failed pro- 
cessor and must already have all the communica- 
tion links needed to replace the failed processor in 
the computation. Several universities, such as the 
University of Michigan and the University of Illi- 
nois, are studying such reconfigurable, fault-tolerant 
hypercubes. These strategies tend to be extremely 
complex and require a large number of spare pro- 
cessors spread throughout the configuration to toler- 
ate even a single, localized processor failure. These 
complex reconfiguration strategies are due to the in- 
flexibility of the hypercube architecture. The analy- 

I 

sis of such an architecture is further complicated by 
the fact that the physical proximity of node failures 
affects their impact on system reliability. Thus, reli- 
ability analysis of a hypercube topology with such a 
complex reconfiguration scheme is beyond the capa- 
bility of the tools available and would require lengthy 
simulation to get even a rough estimate of reliability. 

Dynumic hypercube architectures. New hyper- 
cube architectures are being developed that can pro- 
vide both fixed and dynamic routing of messages be- 
tween nodes. Such dynamic architectures seem to 
have circumvented some of the problems generally 
associated with hypercube architectures. Some ideas 
on designing a fault-tolerant hypercube based on a 
dynamic routing approach are presented by Rennels 
(1986). Reconfiguration of a hypercube architecture 
can be extremely complex, and ensuring that redun- 
dant communications take place over independent 
communication paths can be especially tricky. Al- 
though several universities are making progress on 
some specific issues of fault- tolerant, reconfigurable 
hypercube architectures, no significant results are 
available yet. It will be a number of years before 
the problems associated with designing a highly re- 
liable hypercube architecture are worked out. Such 
research is proceeding slowly because of the complex- 
ity of analyzing a reconfigurable hypercube network 
topology. 

Assessment of State of the Art 

The FTPP appears to be the only architecture 
currently under development that might provide 
both the high reliability and the high performance 
required for the target application. Without major 
modifications, none of the other architectures stud- 
ied could supply both the high reliability and the 
high performance needed for the target application. 
Therefore, the FTPP was chosen as the candidate 
architecture for further analysis in this paper. The 
fault tolerance aspects of the FTPP are described in 
detail in the following section. 

Analysis of the CSDL Fault Tolerant 
Parallel Processor 

The Fault Tolerant Parallel Processor (FTPP) 
was designed by the CSDL to provide medium-to- 
coarse granularity parallel processing for applications 
requiring high throughput as well as very high relia- 
bility (Harper 1987). The FTPP architecture topol- 
ogy consists of a number of clusters, in which a t y p  
ical cluster consists of four fully connected Network 
Elements (NE’S), and each NE is connected to four 
Processing Elements (PE’s) as shown in figure 1. The 
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number of PE’s connected to each NE and the num- 
ber of NE’s per cluster can be changed to provide 
optimal performance for a given application. 

Within a cluster, each NE and the PE’s connected 
to it form a fault-containment region. Redundant 
computations are performed on PE’s connected to 
different NE’s, and thus they are in separate fault- 
containment regions. Communication within a clus- 
ter is accomplished by passing the data to the NE’s 
where it is exchanged to provide Byzantine resilience. 

Intercluster communication on the FTPP takes 
place over communication links between PE’s of the 
clusters as shown in figure 2. Three PE’s of one clus- 
ter must be connected to three PE’s of the other clus- 
ter over independent communication links to provide 
Byzantine-resilient data exchange. Each of the PE’s 
should be connected to a different NE so that they 
are in separate fault-containment regions. An inter- 
cluster exchange is requested by the PE’s in the first 
cluster. The NE’s in that cluster vote on the data- 
exchange request. Three PE’s on the first cluster 
then send the data to three PE’s on the second clus- 
ter. The NE’s on the second cluster then vote on the 
data received. The second cluster then retransmits 
the voted data to the first cluster where it is again 
voted for fault detection and isolation. 

In the prototype system, each PE is a 12.5-MHz, 
32-bit’ Motorola MC68020 microprocessor with an 
MC68881 floating-point coprocessor, 1 megabyte 
of random access memory (RAM) and 128 kilo- 
bytes of erasable programmable read-only memory 
(EPROM). The FTPP is designed to support vari- 
ous types of PE’s, such as 1/0 processors or other 
special-purpose processors, in a heterogeneous con- 
figuration. The NE’s will be custom-built processors, 
and the communication links are standard buses. 

During the design of the FTPP, the system was 
carefully analyzed and much attention was given 
to the inclusion of basic fault tolerance features. 
Therefore, much of the lower-level validation work 
has already been done. These fault tolerance features 
are briefly described in the following sections. Since 
implementation of the FTPP is not yet complete, a 
number of system parameters such as bandwidth of 
the NE’s are not yet known. Performance analyses 
will have to be completed to obtain measurements 
of a number of the parameters used in the reliability 
analyses. 

Redundancy 
Duplex redundancy and rollback will be used to 

detect and correct faults before they propagate errors 
into the system. The outputs of the two redundant 
copies of each computation are voted for fault detec- 
tion. when voting detects an error due to either a 

Processing 
Element (PE) 

Figure 1. FTPP cluster of 4 Network Elements and 16 Pro- 
cessing Elements. 

Figure 2. Triplex intercluster communication links between 
two FTPP clusters. 



permanent or a transient fault, the affected computa- 
tions are repeated from the last checkpoint on one or 
more independent processors. The three or more re- 
sulting independent answers are then all used in the 
isolation of the cause of the error to a faulty compo- 
nent. A performance analysis of the checkpointing 
scheme used will have to be performed to determine 
if the system will always have time to repeat com- 
putations from the last checkpoint without missing 
any real-time deadlines. Because a large number of 
transient faults are expected, a faulty processor will 
not be considered to have permanently failed until 
it produces incorrect answers on several consecutive 
iterations. Once the processor is determined to have 
permanently failed, it is removed from the compu- 
tation and replaced with a spare processor if one is 
available. If there are no spares, the computations 
are continued in simplex. System failure due to the 
arrival of a second near-coincident fault before the 
first faulty component is removed was not modeled. 

The redundant computations must be performed 
independently so that a fault affecting one of the 
redundant computations cannot also cause an error 
in another computation. On the FTPP, the duplex- 
redundant computations are performed on separate 
processors within separate fault-containment regions 
(FCR). Each FCR must have its own independent 
power supply and must operate independently of 
other FCR’s. Whenever data or system control 
information is passed between FCR’s, voting and 
fault masking take place. 

The effectiveness of redundancy for fault masking 
also depends on the assumption that the redundant 
computations are performed in exactly the same way 
on the same input and with the same intermediate 
system state values. Exact match voting is then used 
to detect and mask errors. The input values are 
exchanged between fault-containment regions and 
voted to ensure that the same input values are used 
by all processors. 

1 

Byzantine Resilience 
Each NE with its associated PE’s makes up a 

separate fault-containment region of the FTPP. The 
NE’S within a cluster are connected to each other via 
separate point-to-point communication links, thus 
providing independent communication links between 
fault-containment regions. Although the computa- 
tions are only duplex redundant with rollback error 
recovery, all communications are exchanged between 
the four or more NE’S within the cluster. Thus, all 
the requirements for Byzantine resilience are met: 
there are at least four fault-containment regions par- 
ticipating in each message transaction, those mes- 
sages are sent over distinct, independent communi- 

1 
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cation paths, and two rounds of data exchange occur 
between the fault-containment regions for each mes- 
sage transaction. 

Synchronization 

The NE’S within a cluster are tightly synchro- 
nized. The synchronization algorithm that is used 
(synchronizing on the second incoming clock signal) 
has been proven to provide tolerance of one faulty 
clock for a system of four or more clocks (Krishna 
et al. 1985). The processors within a cluster of the 
FTPP remain synchronized within a bounded skew 
using a functional synchronization scheme as a side 
effect of the normal intracluster communication. If 
the PE’s do not exchange messages often enough 
to guarantee synchronization within an acceptable 
skew, they can initiate data exchanges solely for the 
purpose of synchronization. 

Scheduling and Deadlock Protection 

A functional programming model is being de- 
veloped for the FTPP that will provide graceful 
degradation in the presence of faulty processors, dy- 
namic load balancing between processors, distributed 
checkpointing and recovery, and Byzantine resilience 
with duplex processing (Troxel 1987). In a func- 
tional programming model, a function call and its 
arguments completely describe the computation to 
be performed. Since no system state is maintained, 
each function call serves as a global checkpoint for 
system rollback. If the duplex results of each func- 
tion evaluation are voted for fault detection, then 
the errors produced by a faulty processor before de- 
tection, and thus the amount of computation to be 
repeated, are contained within a single-function eval- 
uation (Jagannathan and Ashcroft 1986). 

Designing a Preliminary Configuration 

Once the candidate architecture is chosen, a 
preliminary configuration of that architecture must 
be designed to meet the performance and reli- 
ability requirements of the mission. An effective 
configuration-design methodology for a parallel- 
processor architecture must combine both perfor- 
mance and reliability evaluation in an iterative 
approach. Performance analyses range from a high- 
level determination of the basic requirements of the 
system to performing trade-off analyses between fault 
tolerance or performance strategies. Reliability anal- 
yses determine design decisions, such as the amount 
of redundancy needed, and the fault-detection cover- 
ages and reconfiguration times required to meet the 
mission reliability requirements. 

9 



The first step is to perform a high-level perfor- 
mance analysis to estimate the number of processors 
and the number of communication links between pro- 
cessors needed for the application. For this study, 
it was estimated that 256 processors with at  least 
1 communication link between them would be needed 
for computations during system engagement. It is 
important that these initial estimates be reasonably 

I accurate. However, it is usually impractical to ac- 
I curately estimate the computation and communica- 

tion bandwidth requirements of the system before the 
system is designed in detail and performance analy- 
ses can be carried out. If major changes are made 
later in the required number of processors or the 
number of communication links, reliability consider- 
ations may necessitate a major redesign of the sys- 
tem and many of the analyses performed before the 
change may have to be repeated. Since the require- 
ments of an application are often considerably under- 
estimated, these initial estimates should be made 
somewhat pessimistically. 

Basic design decisions must also be made in re- 
gard to the network topology and on whether duplex- 
redundancy fault detection and rollback or triplex- 
redundancy fault masking will be used. Then, a 
high-level reliability analysis is performed to deter- 
mine whether the fault tolerance strategy and redun- 
dancy levels chosen will provide the required reliabil- 
ity during the lh-hour engagement. Then, the sparing 
capability and the fault detection and reconfiguration 
strategies needed to provide the required reliability 
over the 5-year mission must be determined. 

The reliability requirements of the SDI satel- 
lite mission require the system to be extremely re- 
liable for a Yz-hour maximum engagement mission. 
The probability that the system cannot perform the 
engagement mission after 5 years with no repair 
must be less than 0.0001 for a single platform. In 
this scenario, the system should have two separate 
types of FDIR (Fault Detection, Isolation, and Re- 
configuration) schemes. 

During peacetime when the system is relatively 
idle, diagnostic tests should be run to ensure that 
no latent faults are accumulating. Transient faults 
will probably be more frequent in a radiation-harsh 
space environment. Thus, the system should make 
every effort to ensure that faults are not transient be- 
fore reconfiguring out processors. This is especially 
important since significant numbers of processors will 
certainly fail over a 5-year mission, and failed proces- 
sors cannot be repaired in space. A large number of 
spare processors will be needed to tolerate the failures 
expected over 5 years, and these processors should 
be “cold” (power off when not in use) to minimize 
their wear-out rates. When a cold spare processor 
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is reconfigured into the system, extensive diagnostics 
must be performed to ensure that the processor is 
healthy. 

During the short burst when the system is used, 
the objective is to maximize the throughput of the 
system. Since the engagement mission time is only 
Yz hour, a triplex-redundancy scheme with fault 
masking and minimal reconfiguration capability is 
preferable to minimize the time spent on fault de- 
tection and isolation. A trade-off analysis should be 
performed to determine if the rollback necessary for 
fault recovery from duplex-redundancy fault detec- 
tion is too computationally expensive for the high- 
performance application. These important design 
trade-offs must be made by considering both relia- 
bility and performance. 

Once the basic fault tolerance strategies and re- 
dundancy levels are chosen, a high-level reliability 
model of the system is used to determine if the sys- 
tem has the required reliability during system en- 
gagement. If the fault tolerance strategies chosen 
are found to be inadequate, the system must be re- 
designed until satisfactory fault tolerance strategies 
are found. Similarly, if the system is found to pro- 
vide much more reliability than that needed by the 
application, the redundancy level or reconfiguration 
capability can be reduced to lower the cost of the 
system. 

After determining the number of components and 
connectivity required to meet the reliability require- 
ments for engagement, the next step is to deter- 
mine the number of cold spare processors needed 
for a probability of system unavailability of less than 
0.0001 at the end of a 5-year mission. 

The remainder of the evaluation methodology in- 
volves more detailed reliability and performance eval- 
uation. It must be determined if all the basic fault 
tolerance design issues assumed in the high-level re- 
liability analysis, such as interactive consistency and 
synchronization, are implemented properly in the 
system. As the fault tolerance design parameters, 
such as reconfiguration time, are measured, any af- 
fected previous reliability analyses may have to be 
repeated. If any parameters were previously over- 
estimated to the extent that the system no longer 
has the required reliability as implemented, the ba- 
sic fault tolerance strategies or their implementation 
must be redesigned, and the affected analysis must 
be repeated. 

The Semi-Markov Unreliability Range Evalua- 
tor (SURE) reliability analysis program (Butler and 
White 1988) was used for the analysis of system be- 
havior during the Yz-hour engagement mission. The 
semi-Markov models for SURE to analyze were gen- 
erated using the Abstract Semi-Markov Specification 



Interface to the SURE Tool (ASSIST) computer pro- 
gram (Johnson 1986). 

The 5-year mission analysis required the solution 
of models with extremely long path lengths over a 
long mission time. None of the well-known reliability 
analysis programs developed by NASA Langley-t he 
SURE program, the Computer- Aided Reliability Es- 
timator (CARE 111) program (Bavuso and Peterson 
1985), and the Hybrid Automated Reliability Pre- 
dictor (HARP) program (Dugan et al. 1986)-were 
suited to solving these models. Neither CARE I11 
nor HARP could generate the models needed for 
the long-mission analyses without extensive pre- 
computation, because they cannot model cold spares. 
The HARP program also allows the user to input 
a hand-generated model; however, the HARP solver 
could not handle long-path-length models with as few 
as 50 transitions over a 5-year mission time. The 
SURE program required computation time on the 
order of several days to solve a single model. 

Therefore, the little-known Scaled Taylor Expo- 
nential Matrix (STEM) program (Butler and Steven- 
son 1988) was used to solve the long-mission-time 
models. The STEM program, which can solve only 
Markov models, has the same model-input format 
as the SURE program. For most large models, 
the SURE program is considerably faster than the 
STEM program. However, the STEM program can 
solve simple models with very long path lengths and 
long mission times in seconds that would require 
days of execution time for the SURE program. The 
ASSIST program was used to automatically generate 
the models to input to STEM. 

Reliability of Individual Components 
The first step in performing a reliability analysis 

of a system is to estimate the failure rates of the indi- 
vidual components making up the system. Although 
exact determination of component failure rates is im- 
possible before the components are accurately char- 
acterized, rough estimates of component failure rates 
must be made in order to perform trade-off studies. 

The presence of an abnormality in a component 
that will cause it to operate incorrectly is referred 
to as a “fault.” A component containing such a 
fault is referred to as “having failed.” If the failed 
component is subsequently used in computation, it 
may introduce an error into the computation. 

Calculations of component failure rates according 
to the 1982 Military Handbook 217D (MIL-HDBK- 
217D) take the harshness of the environment into 
account by rating the class of environment in which 
the component will operate and then by multiply- 
ing the failure rate of the component by the corre- 
sponding environmental factor. The environment of 

a satellite is under the class “Space, Flight” environ- 
ment for Earth orbital vehicles that are neither un- 
der powered flight nor in atmospheric reentry. The 
probability of failure for a component in this environ- 
ment must be multiplied by 0.9. This environment is 
considered only slightly harsher than the “Ground, 
Benign” environment, which has an environmental 
factor of 0.38. During deployment of the satellite, 
the components will undergo a period of extremely 
harsh environment under the “Missile, Launch” envi- 
ronment class, which has an environmental factor of 
13.0. Thus, a significant number of components may 
be lost during the initial deployment of the satellite. 

The 1982 Military Handbook 217D standard also 
includes the effects of the use of new devices or tech- 
nology in the failure-rate calculations. Current tech- 
nology parts will be assumed for this study because 
it takes 5-10 years for technological advances to be 
available in space-qualified parts. Even with current 
technology, the devices used in a highly parallel pro- 
cessor for an SDI satellite would almost assuredly be 
new devices. Up to the first 6 months of production 
of a new device, the failure rate of the device must 
be multiplied by a factor of 10.0 to account for the 
learning factor. Also, if Silicon on Sapphire (SOS) 
technology were used to counter the high-radiation 
environment, this would be another reason for using 
a learning factor of 10.0 according to the military 
standard since the use of SOS technology is explic- 
itly listed as requiring a learning factor of 10.0. 

The failure rate of a Bendix BDX-930 avionic 
processor was measured as 4 x per hour, of 
which 1.4 x per hour was due to connector fail- 
ures (McGough and Swern 1981). However, as Very 
Large Scale Integration (VLSI) technology improves, 
marked improvement in the reliabilities of simple 
components can be expected. The following com- 
ponent probabilities of failure will be used. It will 
be assumed that extremely simple VLSI chips can 
be produced with a probability of failure of approx- 
imately per hour. More complex chips, such 
as switches and 1/0 nodes with very little computa- 
tional capability, are assumed to have probabilities of 
failure as low as per hour. Physical connectors 
will also be assumed to have probabilities of failure 
of per hour. A probability of failure for a com- 
putational processor of 5 x lod5 per hour will be 
assumed. Computational processors tend to be ex- 
tremely complex and need separate power supplies 
and internal memories, etc. Thus, since the failure 
of a computation processor can be caused by the fail- 
ure of any one of these components, the failure rates 
of the individual components add up to make the 
processor failure rate very high. The additive nature 
of these component failure rates can be seen in the 
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reliability analysis done for the entry research vehi- 
cle (ERV) by Dzwonczyk et al. (1989). This study 
also shows the dramatic increase of component failure 
rates in the presence of heat and other environmental 
hazards of space. 

The failure rate of computational processors in- 
cludes permanent failures, transient failures that per- 
sist long enough to be detected as transient, and 
transient faults that cause permanent errors (such 
as corrupted memory locations). Intermittent faults 
will not be modeled in this study because so little 
data are available on their arrival and disappearance 
rates that they cannot be modeled with reasonable 
accuracy. 

It has been suggested by some that processor fail- 
ure rates over long mission times may not be expo- 
nentially distributed, but may actually decrease over 
a long mission time (Hecht and Hecht 1985). A brief 
description of the applicability of this phenomenon to 
the target application and a reliability analysis taking 
this into account are given in the subsequent section 
entitled “A More Optimistic Long-Mission Analysis.” 

To provide redundancy over the long mission, the 
system will use spare processors that are cold (power 
off when not in use). Cold spare processors are sub- 
ject to failure even when the power is off however, 
it is generally assumed that they have a lower fail- 
ure rate than “hot” (power on) processors. The 
failure rate of cold spare processors is a subject of 
debate among reliability engineers, mostly because 
of the lack of available data. Most failure-rate es- 
timates range from one-third to one-twentieth (see 
Kern 1978) those of active processors. For this study, 
cold spare processors will be assumed to have failure 
rates that are one-tenth those of active processors. It 
will be assumed that the cold processors are exten- 
sively tested for failures before being brought into 
the active configuration. The use of spare processors 
that are “warm” (periodically cycled on and checked 
for latent faults) will not be considered because the 
act of repeatedly turning these processors off and on 
actually causes them to have a significantly higher 
failure rate. 

For this study, active-component failures rates for 
the FTPP were assumed to be 5 x per hour for 
the PE’s and 1 x per hour for the NE’s. Since 
the NE’s can be considerably simpler and have less 
memory than the PE’s, they have a correspondingly 
lower failure rate. Communication links are assumed 
to have failure rates of 1 x per hour because of 
their physical connectors. 

Designing a Preliminary Configuration for 
the FTPP 

In this section, a preliminary configuration is 
designed for the FTPP to meet the requirements 
of the application. Those requirements are that 
the probability of failure of the system to pro- 
vide 256 parallel, reliable computations during the 
%-hour engagement must be less than and the 
probability that the system will not have sufficient 
resources to support the reliable engagement after 
5 years must be less than 0.0001. 

Since the FTPP provides Byzantine-resilient fault 
tolerance using only duplex redundancy, a fault tol- 
erance strategy of duplex redundancy with no recon- 
figuration during engagement was chosen for the first 
cut. This requires 512 processors. Two choices that 
must be made to optimize performance and reliabil- 
ity for the application are how many PE’s should 
be connected to each NE and how many NE’s should 
there be per cluster. A number of interrelated factors 
go into making this decision. Each duplex computa- 
tion must take place on two PE’s in the same cluster 
that are connected to different NE’s. Communica- 
tion within a cluster (intracluster communication) is 
very fast, and every communication is exchanged be- 
tween all the NE’s in the cluster. Communication 
between clusters (intercluster communication) takes 
place over links between PE’s on each of the clusters. 
This is much slower than intracluster communica- 
tion, and if too much intercluster communication is 
required, then the PE’s involved in the communica- 
tion will be less able to contribute to the application 
computation. Thus, the divisibility of the applica- 
tion processing into somewhat independent clusters 
is mostly a function of how well the application pro- 
gram computation can be broken into somewhat in- 
dependent pieces. 

The choice of system configuration should be 
based on a combination of performance analysis and 
reliability analysis of the system. For the purposes 
of this analysis, it will be assumed that reconfigura- 
tion can take place only within a cluster, and each 
cluster must have its own pool of spare processors. 
This assumption has three effects on the system. 
First, a lower reconfiguration time can be assumed 
because reconfiguration will not have to take place 
systemwide. Second, the communication perfor- 
mance requirements between clusters can be lower 
because the high bandwidth needed for timely func- 
tion migration (transmitting code to a new host pro- 
cessor) is not needed. Third, this assumption of no 
function migration will lower the memory require- 
ments for each processor because the processors 
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within each cluster will have to keep in memory only 
the code that will be processed within the cluster. 

Since PE and NE failures within a cluster hap- 
pen independently from PE and NE failures in 
other clusters, each cluster can be analyzed inde- 
pendently when determining the sparing capability 
needed within each cluster. If the system is broken 
into 16 clusters of 32 parallel computations each, the 
probability of failure of each of the 16 clusters over 
1/2 hour must be 

10-7/16 = 6.25 x lo-’ 

I Since this is less than the failure rate of a single NE, 
the cluster must have enough sparing capability to 
tolerate the failure of any arbitrary NE, as well as 
the failure of several PE’s. Thus, if each NE supports 
only two PE’s, then a single NE failure causes only 
the loss of two PE’s; whereas if there are five PE’s 
per NE, a single NE failure causes the loss of five 
PE’s. Therefore, the more PES per NE, the more 
spare processors are needed in the configuration. The 
above analysis did not take into account the fact that 
each additional NE in the cluster requires links to 
each other NE in the cluster. Thus, the number of 
point-to-point communication links between NE’s in 
a cluster is 

#LINKS = #NE x (#NE - 1)/2 

Thus, the number of intracluster communication 
links grows from 21 links required to fully connect 
7 NE’s to 136 links required to connect 17 NE’s. 
To support 32 parallel computations, the system 
with 2 PE’s per NE requires the participation of 
17 NE’s in every intracluster communication ex- 
change, whereas the system with 5 PE’s per NE 
requires only 8 NE’s to participate in intracluster 
communication exchange. This additional message 
exchange overhead can seriously degrade perfor- 
mance. According to the system designers, a cluster 
with more than 8 or 10 NE’s is probably infeasible. 
Unless the application can be split into a very large 
number of clusters, it is probably preferable to have 
as many PE’s per NE as the communication through- 
put of the NE can reliably handle. The divisibility 
of the application processing into somewhat indepen- 
dent clusters, coupled with a performance analysis of 
the communication throughput that can be handled 
by an NE, should be the driving factors in choosing 
the number of PE’s per NE and the number of NE’s 
per cluster. 

As evidenced by the above discussions, choosing 
the optimum configuration involves a complex trade- 
off analysis. The more PE’s there are per NE, the 

fewer NE’s there are in the system to fail-but more 
spare PE’s are needed. The more NE’S there are 
in a cluster, the less intercluster communication is 
needed-but more NE’s are involved in intracluster 
exchanges. Robert Burley, manager for business and 
systems engineering of advanced VAX systems at 
Digital Equipment Corporation, has a good analogy: 
“It’s like a game called Whack-A-Mole. You stand 
there with your mallet and when a mole pops up, you 
hit it on the head. But the faster you hit, the faster 
other moles pop up. The next mole up can be CPU 
speed, memory bandwidth, 1/0 port performance, 
or device speed. You just have to keep hitting.” (See 
Wilson 1987.) 

For our first attempt, the initial configuration will 
consist of 16 clusters with each cluster responsible 
for 32 redundant computations. Thus, system fail- 
ure occurs unless all 16 clusters still have at  least 
32 PE’s working at the end of the engagement. These 
32 duplex computations will require 64 parallel com- 
putations, which is probably approaching the limits 
of what a single cluster can handle. To obtain an 
overall probability of failure of less than over 
a lh-hour engagement, each of the 16 clusters must 
have a probability of failure of less than 10-7/16, 
or 6.25 x lo-’. Table 1 shows the probabilities of 
failure over 1/z hour determined for various cluster 
configurations as computed by the SURE reliability 
analysis program. The failure rates of PE’s and NE’s 
are high enough that the cluster must have enough 
sparing capability to tolerate failure of at least one 
NE and several PE’s during engagement. Details of 
the reliability models used in the above analysis are 
given in appendix A. 

For the purposes of this paper, it will be assumed 
that a performance analysis showed that each NE 
can provide the throughput needed for six PE’s. A 
cluster consisting of 6 NE’s with 6 PE’s attached 
to each plus 1 NE with 2 PE’s attached to it for 
a total of 38 PE’s, as shown in figure 3, will be used 
in further analysis in this paper. This configuration 
has been shown to provide the needed reliability and 
minimizes the number of NE’s in the cluster without 
overloading the communication and voting that each 
NE must perform. Clusters formed from the various 
possible configurations of 38 PE’s attached to 6 NE’s 
do not differ significantly in reliability. 

Reliability Over a 5-Year Mission 
The configuration chosen for the Yz-hour mission 

consists of 16 clusters with each cluster containing 
7 NE’s and 38 PE’s and a maximum of 6 PE’s per 
NE. This requirement was represented in table 1 
by the configuration of six NE’s with six PE’s each 
plus one NE with two PE’s. However, any cluster 
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Maximum 
PE’s per NE Configuration 

16 x 2 
16 x 2 + 1 x 1 
17 x 2 
11 x 3 
11 x 3+ 1 x 1 

5 
5 
- 5 

Cluster failure Sufficiently low 
Total PE’s probability failure probability 

32 2.7627 x No 
33 5.0317 x No 
34 3.6841 x Yes 
33 5.4222 x No 
34 2.9302 x No 

6 
6 

I 6 

1 1 X 3 + 1 X 2  - 35 I 1.9700 x I Yes 

Table 1. Failure Probabilities Over 112 Hour for Each of 16 Clustersa 

9 x 4  
7x5 
7X5+1Xl 
7 X 5 + 1 X 2  
6x6 
6x6+1x1 
6 x 6 + 1 x 2  

- 36 1.4220 x 
35 3.1277 x No 
36 1.6982 x No 
- 37 1.1115 x Yes 

- 38 9.4635 x Yes 
36 2.6775 x No 
37 1.4537 x No 

8 

s a 

8x4 
8x4+1x1 
8X4+1X2 
8x4+1x3 

4x8 
4x8+1x7 
5 x 8  

32 
33 
34 
35 

32 2.3603 x No 
39 9.6674 x No 
- 40 7.6777 x Yes 

2.4677 x 
5.4503 x 
3.7563 x 
1.9434 x 

No 
No 
No 
No 

5x7 
5X7+1Xl 
5 x  7+1 x 2 
5X7+1X3 
5 X 7 + 1 X 4  

35 
36 
37 
38 
- 39 

4.1573 x 
3.3892 x 
2.3383 x 
1.2098 x 
7.9106 x 

No 
No 
No 
No 
Yes 

aA configuration description of 5 x 7+ 1 x 2 denotes a cluster containing five NE’S with seven PE’s attached 
to them plus one NE with two PE’s. The probability of failure over the short-term mission for each of the 
16 clusters must be 

10-7/16 = 6.25 x lo-’ 
Note that the probability of failure drops dramatically for configurations containing enough spares to tolerate 
any arbitrary NE failure. 
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” 00 
Figure 3. A cluster consisting of 6 NE’S with 6 PE’s attached 

to each plus 1 NE with 2 PE’s attached to it for a total 
of 38 PE’s. 

configuration with 7 NE’s and 38 PE’s with no more 
than 6 PE’s connected to 1 NE meets the reliability 
requirements of the Yz-hour mission. The choice of a 
configuration without a full complement of PE’s on 
each NE may be confusing to the reader; however, 
it should be remembered that this is the target 
minimum configuration needed at the end of a 5-year 
mission after a number of PE and NE failures have 
occurred, not the initial configuration to be launched 
at the start of the mission. 

In this step it is determined what the initial 
configuration of the system must be to provide the 
sparing capability to still have 38 PE’s working in 
every cluster after 5 years with a probability of 
0.9999. Since PE’s cannot be shared across clusters, 
each cluster must provide for its own sparing. Since 
the system has been divided into 16 independent 
clusters, the probability of having fewer than 38 PE’s 
working after 5 years for each of the 16 clusters must 
be less than 

0.0001/16 = 6.25 x 

An analysis of various configurations of 38 PE’s 
with up to 6 PE’s per NE that were tested over a 
%hour mission shows that as long as there are 
38 PE’s per cluster in the configuration, the prob- 
ability of failure is the same or lower. For example, 
a cluster with nine NE’s with four PE’s per NE plus 
one NE with two PE’s has a probability of failure of 
1 x which is two orders of magnitude lower 
than the chosen configuration. As the average num- 
ber of PE’s per NE drops, the probability of failure 

drops by several orders of magnitude. Thus, what is 
important is that 38 working PE’s are connected to 
some number of working NE’s in the cluster. 

In order to provide reliability over the long mis- 
sion, cold spare PE’s connected to cold NE’s will be 
used. As discussed earlier, these components will be 
assumed to have one-tenth the failure rate of hot PE’s 
and NE’s. When a cold spare is brought on-line to 
replace a failed PE, the processor must be fully tested 
for latent failures that may have occurred while the 
processor was dormant. Since this process takes a 
considerable amount of time, the system must always 
have at least the 38 processors needed for the active 
mission running hot (power on) at all times. As the 
hot processors fail, they will be replaced from the 
pool of cold spares. It is possible that the system 
can enter the engagement mission while one or more 
clusters is in the process of reconfiguring in a cold 
spare processor, and thus the system would have less 
than a full complement of 38 PE’s. However, for 
purposes of simplification, this possibility will not be 
modeled because of the negligible probability of an 
occurrence and its minimal effects on the rough reli- 
ability estimates. 

A simple combinatoric calculation cannot be used 
to determine the initial system configuration needed 
because of the reconfigurations and differences in fail- 
ure rates. Therefore, a Markov analysis of the system 
is required. The Markov analysis method consists of 
choosing a candidate initial configuration, perform- 
ing a Markov analysis, and checking the results to 
see if the needed reliability was obtained. If the re- 
liability is too low, the number of initial PE’s per 
cluster is increased, and the process is repeated until 
an optimum initial configuration is reached. 

To get an idea of the number of spares needed, 
a simple model wits used that included only PE 
failures. The ASSIST file to generate this model is 
shown in appendix B. This analysis showed that even 
if the NE’s do not fail at all, an initial configuration 
of 31 NE’s with 6 PE’s each is needed for a total 
of 186 PE’s per cluster. Of those 186 PE’s in a 
cluster, 148 are cold spares, 6 are hot spares, and 32 
are needed for performing the 16 computations with 
duplex redundancy. This number is clearly optimistic 
because NE failures were not considered, and each 
NE failure will additionally take out all the PE’s 
connected to it. This rough approximation gives us 
a starting point for the larger, more accurate models 
of failure behavior. 

Unless great care is exercised in modeling the 
system, exorbitantly huge models will be obtained 
that cannot even be stored on our computer, much 
less solved. Consider, for example, our current 
configuration of 31 NE’s and 186 PE’s. At least 
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31 - 6 = 25 of the NE’s or 186 - 38 = 148 of the 
PE’s, or some combination of NE’s and PE’s must 
fail before we fail to have the needed configuration. 
There are 186!/38! distinct paths to system failure 
from PE failures alone. Fortunately, many of these 
paths can be aggregated and many others are un- 
likely enough that they can be ignored. 

Before proceeding further, we should consider the 
feasibility of a cluster of 31 NE’s. The point-to- 
point communication links to fully interconnect these 
31 NE’s would require 31 x 30/2 = 465 links. Getting 
close enough to these 31 NE’s and their 186 PE’s to 
provide tight synchronization and small intracluster 
message latency is probably impossible. One solution 
is to try to break up the system into much smaller 
clusters. If our application algorithm cannot be 
broken into many somewhat independent pieces, then 
we clearly have a problem. In order to reduce the 
size of each cluster, the system was divided into 32 
and then 64 clusters and the above analyses were 
repeated. 

If the system is divided into 32 clusters, each of 
the clusters is responsible for the reliable execution 
of 8 duplex parallel computations. The probability 
of failure of each of the clusters over the lh-hour 
engagement mission must be less than 

1 x 10-7/32 = 3.125 x lo-’ 

Table 2 shows the lh-hour failure probabilities for 
each of the 32 clusters. Over the 5-year mission, the 
probability of falling below the number of processors 
needed for engagement must be less than 

0.0001/32 = 3.125 x 

Using a configuration of 6 PE’s per NE requires an 
initial configuration of approximately 21 NE’s and 
126 PE’s. This initial configuration would, of course, 
require 21  x 20/2 = 210 point-to-point communica- 
tion links between the 21 NE’s. Alternatively, using a 
configuration of only 4 PE’s per NE requires an initial 
configuration of 28 NE’s and 112 PE’s. If a cluster of 
21 NE’s is infeasible because of interconnection and 
physical-proximity restrictions, the system must be 
divided into even more clusters. 

With the system divided into 64 clusters, each of 
the clusters is responsible for the reliable execution of 
only 4 duplex parallel computations. The probability 
of failure of each of the clusters over the %-hour 
engagement mission must be less than 

1 x 10-7/64 = 1.5625 x lo-’ 

Table 3 shows the lh-hour failure probabilities for 
each of the 64 clusters. Over the 5-year mission, the 

probability of falling below the number of processors 
needed for engagement must be less than 

0.0001/64 = 1.5625 x 

Using a configuration of 6 PE’s per NE requires an 
initial configuration of approximately 15 NE’s and 
90 PE’s per cluster. Each cluster would require 
15 x 14/2 = 105 point-to-point communication links 
between the 15 NE’s. Using a configuration of only 
4 PE’s per NE requires an initial configuration of 
19 NE’s and 76 PE’s per cluster. If a cluster of 
15 NE’s is infeasible because of interconnection and 
physical-proximity restrictions, the system must be 
further divided. However, dividing the computation 
into more than 64 clusters (with each cluster respon- 
sible for fewer than 4 duplex parallel computations) 
with the requirement that very little data pass be- 
tween clusters is expecting too much from even the 
most optimally parallelizable applications. 

With the system divided into 64 clusters of 
15 NE’s and 90 PE’s each, the total number of com- 
ponents in the system so far is 64 x 15 = 960 NE’s, 
64 x 90 = 5760 PE’s, plus 64 x 105 = 6720 intra- 
cluster links. The technical difficulties of putting 
that much hardware on a satellite and launching it 
into space will not be considered in this paper. In the 
following section, the number of links needed to pro- 
vide communication between these 64 clusters will be 
determined. 

Intercluster Communication 
One problem that has been ignored up until now 

is how many intercluster communication links will be 
needed. Since the larger clusters are probably infeasi- 
ble because of their interconnection, communication 
bandwidth, and tight synchronization requirements, 
only the intercluster links needed for the 64-cluster 
system will be considered in this section. 

For the purposes of this analysis, it has been 
assumed that the number of intercluster communi- 
cation exchanges needed will be small enough that 
the overhead will not seriously degrade the computa- 
tional performance of the PE’s involved. The amount 
of intercluster communication needed is dependent 
on the application being computed. However, for 
a system divided into 64 clusters with each cluster 
responsible for performing only 4 parallel computa- 
tions, this is probably not a valid assumption. If this 
assumption does not hold, then more PE’s must be 
added to the configuration to handle this communi- 
cation overhead processing, and still more spares will 
be needed over the 5-year mission. 

The ASSIST file shown in appendix C was used to 
to get a rough estimate of the number of links needed 
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Table 2. Failure Probabilities Over 1h Hour for Each of 32 Clustersa 

Configuration 
8 x 2  
8 x 2 + 1 x 1  
9 x 2  

Maximum 
PE's per NE 

Cluster failure Sufficiently low 
Total PE's probability failure probability 

16 5.8932 x No 
17 8.5944 x No 
- 18 3.1091 x - Yes 

3 

I 3  
6 x 3  
6 x 3 + 1 x 1  

4 
4 

4 

18 5.7490 x No 
- 19 1.9438 x Yes 

5 

1 5  

3 x 6 + 1 x 4  
6 

1 6  - 22 1 9.6138 x 1 Yes 
7 

1 1  

3 x 8  
8 

1 8  - 24 I 9.7905 x I Yes 

4 x 4  
4 X 4 + 1 X 3  
5 x 4  

16 
19 
- 20 

3.8248 x 1 1.4838 x 

~ 

No 
No 
Yes 

4 x 5  20 3.8163 x lo-' 
4 X 5 + 1 X 1  1 1.2661 x 

No 
Yes 

3 x 6 + 1 x 3  I 21 I 3.0224 x lo-' --r No 

3 x 7 + 1  x 1 3.1826 x lo-' No 
3 X 7 + 1 X 2  22 1 9.9624 x l -  Yes 
2 x 8 + 1 x 7  1 23 I 2.1569 x I No 

aThe probability of failure over the short-term mission for each of the 32 clusters must be 

10-7/32 = 3.125 x lo-' 
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Table 3. Failure Probabilities Over 1/2 Hour for Each of 64 Clustersa 

Maximum Cluster failure 
PE’s per NE Configuration Total PE’s probability 

Sufficiently low 
failure probability 

2 
- 2 

3 

- 4 

- 5 

3 

4 

5 

6 
6 

2 x 7  
- 7 1 2 x 7 + 1 x l  

4 X 2 + 1 X l  9 
5 x 2  - 10 

3 X 3 + 1 X 2  - 11 

3 x 4  - 12 
2 X 5 + 1 X 2  12 

13 2 x 5 + 1 x 3  - 
2 x 6 + 1 x 1  13 
3 x 6 + 1 x 2  - 14 

3 X 3 + 1 X l  10 

2 X 4 + 1 X 3  11 

14 
- 15 

1.5978 x 1 3.0796 x 
No 
Yes 

1.1930 x I 1.8716 x 
No 
Yes 

8.0494 x lo-’ 1 1.8008 x 
No 
Yes 

I 8.5648 x lo-’ I No I 7.3521 x 10-l’ I Yes 
I 9.0821 x lo-’ I No 1 8.2332 x I Yes 

9.0415 x lo-’ No I 9.1622 x l -  Yes 
l x 8 + 1 x 7  

- 8 1 2 x 8  
15 
- 16 

4.8237 x lo-’ 1 9.1557 x 
No 
Yes 

aThe probability of failure over the short-term mission for each of the 64 clusters must be 

10-7/64 = 1.5625 x lo-’ 
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for intercluster communication over the Y2-hour en- 
gagement mission. In this file, the failure probabil- 
ity of each intercluster link is modeled as the fail- 
ure probability of the link, the two PE’s connected 
to it, and their two NE’S. The reader is cautioned 
that some failure behaviors have been modeled as in- 
dependent that are definitely not independent in the 
interest of obtaining a quick and very rough estimate. 
For example, a PE failure is counted twice-in com- 
putation reliability and in communication reliability. 
This amounts to approximating that 

P(A) or P(B) = P(A) and P(B) 

For the small failure rates that are used in these com- 
putations, the difference between these two values is 
very small, at least within the same order of mag- 
nitude. However, a more accurate analysis modeling 
the actual failure behavior of PE’s connected to NE’S 
should be completed once a specific interconnection 
structure is chosen and specifically analyzed. How- 
ever, since information on the behavior of the SDI 
battle management algorithm is still inadequate for 
choosing an appropriate interconnection structure, 
trying to model the system behavior more accurately 
at this stage would be pointless. 

Consider a system in which each of the clusters is 
connected to four other clusters. From each cluster, 
there are at most 4 different clusters that are 1 hop 
away, at most 4 x 3 = 12 clusters that are 2 hops 
away, and at most 4 x 3 x 3 = 36 clusters that are 
3 hops away. For a system of 64 clusters, the farthest 
distance between 2 clusters will be at least 4 hops. 
The actual farthest distance between any two clusters 
in a configuration is dependent on the topology. 

Since there are 64 clusters and each cluster is 
connected to 4 other clusters, there is a total of 
256 intercluster communication paths. Since the 
system has been divided into so many clusters with 
only four parallel computations per cluster, a high 
rate and volume of intercluster communication must 
be assumed. Thus, it will be assumed that failure 
of any one of these intercommunication paths may 
degrade performance below acceptable levels because 
longer communication paths will be necessitated and 
message traffic will be increased on other paths. 
Following this assumption, the probability of failure 
of any one of these intercommunication paths over 
the %-hour engagement mission must be less than 

1 x 10-7/256 = 3.9 x lo-’’ 

The Markov analysis shows that the use of triplex 
links between clusters provides a probability of fail- 
ure of 3.02 x which is 2 orders of magnitude 

too high. Therefore, quad links will be required that 
give a probability of failure for each communication 
path of 2.44 x Using the ASSIST file shown 
in appendix D, it was determined that there must be 
75 links in the initial configuration for each of the 
256 communication paths to ensure that the proba- 
bility of not having quad links after 5 years is 

0.0001/256 = 3.9 x 

Even though this analysis optimistically assumes 
that all but four of the links would be attached to cold 
spare PE’s, this calls for a total of 75 x 256 = 19 200 
communication links in the initial configuration! 

The preceding paragraphs have shown that the 
development of a feasible architecture for a highly 
parallel processor for a 5-year mission with no re- 
pair is probably impossible using current technology 
and massive processor-level redundancy as used in 
the FTPP. Various design trade-offs were used to try 
to overcome the problems. If the system is divided 
into only a few clusters, then the clusters are too 
large to support the synchronization and fast intra- 
cluster communication needed for performance. Di- 
viding the system into more clusters leads to high 
intercluster communication and high numbers of 
spare components needed for each cluster. The prob- 
lem is that since the mean time to failure of a proces- 
sor is actually less than the mission time, the system 
must provide enough sparing capabability to toler- 
ate the loss of most of the processors in the system. 
The next section shows that even the most optimistic 
reliability analysis of a system with processor-level 
redundancy cannot eliminate this problem. 

A More Optimistic Long-Mission Analysis 
A report produced by SoHar Incorporated for the 

U.S. Air Force (see Hecht and Hecht 1985) suggests 
that a more optimistic long-mission analysis may be 
possible. Analysis of over 3000 reports of anoma- 
lous incidents affecting spacecraft revealed that the 
failure rate of components on spacecraft may actu- 
ally decrease over a long mission time. This report 
states that approximately 45 percent of the failures 
on spacecraft are due to design insufficiencies or en- 
countering an unexpected environment. These types 
of failures are naturally higher near the beginning 
of the mission when the rate of encountering pre- 
viously untested environments and operating modes 
is higher. According to this report, these failures 
do not appear to be exponentially distributed, and 
a Weibull distribution or some other two-parameter 
distribution should be used to model them. The 
other 55 percent of failures (consisting of the clas- 
sical parts, quality, operational, and other types of 
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failures) were found not to deviate significantly from 
the exponential distribution over long mission times. 
The SoHar report thus recommends modeling these 
two types of failures independently. If insufficient 
information is available for accurately modeling the 
nonexponential failures, the report recommends sim- 
ply reducing the failure rate used over long mission 
times by one-half. 

The SoHar report (Hecht and Hecht 1985) rep- 
resents a significant and optimistic departure from 
beliefs commonly held by reliability engineers. The 
results of the report have yet to be corroborated by 
other studies. The failure data are plotted as a func- 
tion of failures per spacecraft, not failures per com- 
ponent. Over the lifetime of a spacecraft, a number 
of components fail and are taken out of the active 
system configuration. Thus, fewer components are 
available to fail as the mission continues. Also, as 
stated in the SoHar report, they felt that the appar- 
ent decrease in the failure rate over the long mission 
time of a spacecraft might be attributable to a loss 
of interest and diligence in reporting errors. Clearly, 
much more analysis of component failure rates over 
long mission times is needed. However, for complete- 
ness, the long-mission reliability analysis of our ap- 
plication is repeated below in which SoHar’s more 
optimistic failure rates are applied. 

During the 5-year dormant mission of the SDI 
satellite, the system will be repeating diagnostics 
and performing some monitoring functions, but it 
will probably not be encountering many new envi- 
ronments or operating modes. After launch and a 
short initial operating period, the system should be 
experiencing few design and environment failures. 
Instead of trying to model design and environment 
failures with a Weibull distribution or some other 
two-parameter distribution since we have no idea 
what the parameters should be, the number of de- 
sign and environment failures during the 5-year mis- 
sion will be assumed to be negligible. We can make 
this assumption because the system is essentially dor- 
mant over the 5-year mission and our major concern 
is availability of the system at the end of 5 years. To 
model this, the long-mission analyses of the previous 
section were repeated with the failure rates of active 
components multiplied by a factor of Y2. The failure 
rate of cold spare processors is not affected by design 
or environment failures, and so the spare-processor 
failure rate was kept at the same value used previ- 
ously. It should be noted that this analysis does not 
take into account the high number of components 
expected to fail during launch of the satellite into 
space. 

For a system divided into 16 clusters, there must 
be 38 PE’s still working per cluster after 5 years with 

a probability of 

0.0001/16 = 6.25 x 

Using the lower active failure rate requires an initial 
cluster configuration of 21 NE’s with 6 PE’s each (as 
compared with the previous estimate of 31 NE’s). 
However, even a 21-NE cluster is probably too big to 
be feasible. 

If the system is divided into 32 clusters, there 
must be 22 PE’s still working after 5 years with a 
probability of 

0.0001/32 = 3.125 x 

With the lower active failure rate, the initial clus- 
ter configuration needed consists of 14 NE’s with 
6 PE’s each (compared with the previous estimate 
of 21 NE’s). A cluster of 14 NE’s would require 
14 x 13/2 = 91 intracluster links and may be fea- 
sible, depending on interconnection and physical- 
proximity restrictions. The total initial configuration 
for 32 clusters would consist of 14 x 32 = 448 NE’S, 
14 x 6 x 32 = 2688 PE’s, and 91 x 32 = 2912 intra- 
cluster links. 

With 64 clusters, there must be 14 PE’s still 
working after 5 years with a probability of 

0.0001/64 = 1.5625 x 

The new estimate for the initial cluster configuration 
is 10 NE’s with 6 PE’s each (compared with the 
previous estimate of 15 NE’s). A cluster of 10 NE’s 
and 10 x 9/2 = 45 intracluster links is probably 
feasible. The total system of 64 clusters would then 
consist of 10 x 64 = 640 NE’s, 10 x 6 x 64 = 3840 
PE’s, and 45 x 64 = 2880 intracluster links. 

The analysis of intercluster link failures over the 
long mission was also repeated with a lower failure 
rate for active link failures by a factor of 0.5. En- 
vironments and operation modes should not signifi- 
cantly affect link failures, and so reducing link failure 
rates by one-half seems unjustified. However, we are 
attempting to apply the SoHar technique consistently 
and optimistically. 

If the system is divided into 64 clusters with each 
cluster connected to 4 other clusters, the probability 
of degrading below quad intercluster links must be 
less than 

0.0001/256 = 3.9 x 

over 5 years. With the lower failure rate, the initial 
configuration still requires 52 links for each inter- 
cluster communication path (as compared with the 
previous estimate of 75 links). Thus, even with the 
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lower failure rate, the entire system of 64 clusters 
would require 52 x 256 = 13312 intercluster links. 

If a cluster of 14 NE’S is feasible, the system could 
be divided into only 32 clusters. The probability of 
degrading one of the 32 x 4 = 128 intercluster paths 
below a quad must be 

0.0001/128 = 7.8 x lo-’ 

over 5 years. This would require 50 links per inter- 
cluster path for a system total of 50 x 128 = 6400 
links. 

The above analysis was extremely optimistic. All 
components, including communication links, were as- 
sumed to be twice as reliable as experience has shown 
them to be, and the high number of components 
expected to fail during launch of the satellite into 
space was ignored. Yet, even when using unrealisti- 
cally optimistic failure rates, an initial configuration 
of 640 NE’S, 3840 PE’s, 2880 intracluster links, and 
13 312 intercluster links is still needed. 

Alternative Approaches to Reliability Over 
a Long Mission 

As shown by the above analyses, a reasonable con- 
figuration can be designed to handle the performance 
and reliability needed over the l/z-hour engagement 
mission. However, the 5-year mission time presents 
a big problem. Since the average life of a processor is 
estimated to be 20000 hours, we must expect to lose 
many processors over a mission of 43500 hours. In 
fact, to support 256 parallel computations over a 5- 
year mission requires thousands of processors. Con- 
figuring a system to tolerate the failures expected 
over a 10-year mission using 20 000-hour processors 
would be outrageous. When massive processor-level 
redundancy is used to tolerate huge numbers of ex- 
pected processor failures, exorbitant numbers of com- 
munication links are required to interconnect the 
structure. 

Two possible approaches to solving this problem 
are presented in this section. The first approach 
is to build more reliable processors. The second 
approach is to allow reconfiguration at a lower level 
than the processor-level reconfiguration available on 
the FTPP. A third possible approach, which is not 
pursued in this paper because it probably is not 
feasible for the target application, would be provision 
for the repair of failed processors. 

More Reliable Processors 

Consider a system built of PE’s and NE’s that are 
five times as reliable as those available today. With 
active PE failure rates of 1 x NE failure rates of 

5 x 
an initial configuration of only 51 PE’s and 9 NE’s 
per cluster is sufficient for a system of 32 clusters. 
Total system size is then only 51 x 32 = 1632 PE’s 
and 9 x 32 = 288 NE’s. This is a much more 
reasonable initial configuration. 

If the system could be built with PE’s and NE’s 
that are 10 times more reliable than those available 
today, the initial configuration could be even smaller. 
With active PE failure rates of 5 x NE failure 
rates of 1 x lod6, and cold spare PE failure rates 
of 5 x an initial configuration of only 36 PE’s 
and 6 NE’s per cluster is sufficient for a system of 
32 clusters. Total system size is then only 36 x 32 = 
1152 PE’s and 6 x 32 = 192 NE’s. These clusters 
are small enough that a system divided into only 
16 clusters is feasible. An initial configuration of 
61 PE’s and 7 NE’s per cluster is sufficient for a 
system of 16 clusters, thus giving a total system size 
of 61 x 16 = 976 PE’s and 11 x 16 = 176 NE’s. This 
is approximately one-sixth the size of the original 
configuration. 

The above analyses show the importance of hav- 
ing more reliable processors for long missions with no 
repair. Unfortunately, such reliable processors are far 
beyond the current state of the art. 

and cold spare PE failure rates of 1 x 

Chip-Level Redundancy 
A second promising approach is to allow reconfig- 

uration of faulty components at a lower level than 
the processor level. Figure 4 shows the effects of 
subcomponent-level redundancy on the initial config- 
urations needed for a system of 16 clusters. In the fig- 
ure, each processor has been split into one to five in- 
dependent subcomponents. Each subcomponent has 
an equal share of the original failure rate of the com- 
ponent; for example, for the processor split into five 
subcomponents, each subcomponent has one-fifth the 
failure rate of the original processor. 

As shown in figure 4, the original processor-level 
reconfiguration required an initial configuration of 
126 PE’s per cluster. Splitting each processor into 
2 equal subcomponents reduces the initial configura- 
tion requirement to 108 PE’s. Splitting each proces- 
sor into 5 equal subcomponents reduces the initial 
configuration to only 66 PE’s per cluster. Those ini- 
tial cluster configurations include the 38 PE’s needed 
to support the Yz-hour mission. Thus, the number of 
spares needed for availability after the 5-year dor- 
mancy is decreased from 88 to only 28 PE’s, a de- 
crease of 68 percent, when each PE is separable into 
5 subcomponents. 

A number of factors were not taken into account 
in this quick analysis. First, it is somewhat opti- 
mistic to assume that a processor can actually be 
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Figure 4. Number of PE’s needed in initial clusters of 
16-cluster system for PE’s separated into 1 to 5 sub- 
components. The line drawn at 38 PE’s shows the mini- 
mum cluster needed for processing. 

broken into a number of relatively equal pieces with- 
out any subsequent increase in the failure rate of the 
total component. Second, it was assumed that over 
the 5-year dormant mission the PE subcomponents 
could be fully reconfigured within a cluster to make 
up the maximum number of working PE’s. Whether 
this full reconfigurability could be supported with- 
out compromising the fault-containment regions is 
doubtful. Third, the increases in failure rates due to 
the extra interconnections needed for this flexible re- 
configurability are not accounted for. However, eve1, 
when accounting for extreme optimism in estimation, 
the effectiveness of chip-level reconfiguration is clear. 

Concluding Remarks 
A set of methods, issues, and techniques was pre- 

sented for evaluating the fault tolerance potential 
of parallel-processor architectures and for designing 
a system configuration of a fault-tolerant parallel- 

processor architecture to meet the reliability and per- 
formance requirements of a Strategic Defense Initia- 
tive (SDI) satellite application. Several gaps in the 
tools needed for an analysis of these types of architec- 
tures were identified, including tools for performance 
and communication network analysis. 

The fault tolerance potentials of a number of pro- 
posed fault-tolerant parallel-processor architectures 
were briefly evaluated. The Fault Tolerant Parallel 
Processor (FTPP) under development at the Charles 
Stark Draper Laboratory, Inc., was chosen as the 
most promising candidate architecture. The fault 
tolerance aspects of the FTPP were examined, and 
a preliminary configuration of the FTPP to meet 
the requirements of the SDI defense satellite applica- 
tion was developed. However, it may be infeasible to 
launch a satellite with the large number of spare pro- 
cessors needed in the initial FTPP configuration to 
tolerate the component failures to be expected during 
a 5-year mission. 

The design of a configuration to handle the perfor- 
mance and reliability needed over the Yz-hour engage- 
ment mission is probably within reach with today’s 
technology. However, without components that are 
significantly more reliable than those available today, 
a highly parallel processor architecture for a 5-year 
mission appears to be infeasible. 

Massive processor-level redundancy is not a rea- 
sonable solution to the problem. Two promising al- 
ternative approaches were shown to have significant 
promise-t he development of considerably more reli- 
able components, and the use of redundancy at the 
chip level rather than at the processor level as used 
in the FTPP. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
June 7, 1989 
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Appendix A 

Analysis of P E  Failures Per Cluster During Engagement 
The ASSIST input file used to analyze the failure behavior of processors and communication links 

within a cluster for a given cluster configuration is given below. The parameters are set to analyze 
a cluster responsible for 16 dual-redundant computations. 

INPUT NE-SIZE; 
INPUT N1, N2, N3, N4, N5, N6, N7, N8; 

TIME = 0.5; 
LAMP = 5E-5 + 1E-6; 
LAMT = 5E-4 + 1E-5; 
LAMN = 1E-5 + lE-6*(Nl+N2+N3+N4+N5+N6+N7+N8-1); 

SPACE = (NUM: ARRAYC0..81, (* Number of NEs with how many nonfailed PES *) 
NUMCOMPS , (* Total number of PES *) 
FAILED, (* Flag indicating system failure due to coverage *) 
NCF) ; (* Total number of component failures *) 

(* NUM array *) 
Nl + N2*2 + N3*3 + N4*4 + N5*5 + N6*6 + N7*7 + N8*8, (* NUMCOMPS *) 
0, 0); (* FAILED, NCF *) 

(* Highest number of PES per NE in configuration *) 

(* Nx = Number of NEs with x PES attached, for x = 1,2, ..., 8 *) 
(* Half hour mission time *) 
(* PE permanent failure rate including its link *) 
(* PE transient failure rate including its link *) 

*) (* NE failure rate including its links to other NEs in cluster 

START = (0, Nl, N2, N3, N4, N5, N6, N7, N8, 

DEATHIF NUMCOMPS < 16; 
DEATHIF FAILED = 1; 
PRUNEIF NCF > 3; 

(* System failure due to exhaustion *) 
(* System failure due to coverage *> 
(* Prunes model at third component failure level *) 

FOR I = 1, NE-SIZE; 
IF NUMCOMPS >= 32 THEN; 

IF NUMCI] > 0 TRANTO 
NCF=NCF+l, NUMCOMPS=NUMCOMPS-I , NUM [I] =NUM [I] -1, NUM [O] =NUM [O] +1 
BY NUM [I1 *LAMN; 

IF NUMCI] > 0 TRANTO 
NCF=NCF+ 1 , NUMCOMPS=NUMCOMPS- 1 , NUM [I1 =NUM [I] - 1 , NUM [I - 11 =NUM [I - 11 + 1 
BY I *NUM [I] *LAMP ; 

(* No spares, some computations simplex *) 

(* All computations duplex *) 
(* NE failures *) 

(* PE failures *) 

ELSE ; 
(* NE failures - uncovered simplex *) 

(* NE failures - covered simplex *) 
IF NUMCI] > 0 TRANTO FAILED=l BY (32-NUMCOMPS)*NUM[I]*0.5*LAMN; 

IF NUMCI] > 0 TRANTO 
NCF=NCF+l , NUMCOMPS=NUMCOMPS-I , NUM [I] =NUM [I] -1, NUM [O] =NUM [O] +1 
BY (32-NUMCOMPS) *NUM [I] *O .5*LAMN; 

(* NE failures - duplex *) 
IF NUMCI] > 0 TRANTO 

NCF=NCF+l, NUMCOMPS=NUMCOMPS-I, NUM[II=NUM[I]-l, NUM[O]=NUM[O]+l 
BY (NUMCOMPS-16) *NUM[I] *LAMN; 

IF NUM [I] > 0 TRANTO FAILED4 BY (32-NUMCOMPS) *I*NUM [I] *O .5* (LAMP+LAMT) ; 

IF NUMCI] > 0 TRANTO 

(* PE failures - uncovered simplex * 
(* PE failures - covered simplex *) 

NCF=NCF+l, NUMCOMPS=NUMCOMPS-1, NUM[I]=NUM[II-l, NUM[I-l]=NUM[I-l]+l 
BY (32-NUMCOMPS) *I*NUM [I] *O. 5*LAMP; 

(* PE failures - duplex *) 
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IF NUM[I] > 0 TRANTO 
NCF=NCF+l, NUMCOMPS=NUMCOMPS-1, NUM[I]=NUM[II-l, NUM[I-ll=NUM[I-lI+l 
BY (NUMCOMPS-16) *I*NUM[I] *LAMP; 

ENDIF; 
ENDFOR; 

This ASSIST file can be used to evaluate any cluster configuration with up to 8 PE’s per NE. The 
configuration to be evaluated is specified using the constants N1 through N8 to denote the number of 
NE’s in the cluster having 1 through 8 PE’s, respectively. The array state space variable NUM tracks 
the current configuration of unfailed NE’s and PE’s in each state of the semi-Markov model. For 
example, if NUM(5) has the value 3 for a state, then in that state the system has three unfailed NE’S 
that are attached to five unfailed PE’s. The state space variable FAILED is set when an uncovered 
failure results in system failure. The constant LAMP is the permanent failure rate for a PE plus the 
link attaching that PE to its NE. The constant LAMT is the transient failure rate of the PE  and its 
link to the NE. If a computation is done in duplex, then transient failures are completely covered. 
However, if a computation is done only in simplex, then a transient failure of the PE or its link 
can cause a system failure with a probability of 0.5. The constant LAMN is the permanent failure 
rate of one NE of the cluster plus all the links connecting that NE to the other NE’s in the cluster. 
Pruning at the third component failure level was used to reduce the size of the semi-Markov models 
generated. The largest of the models contained only 41 states and 332 transitions. The ASSIST 
program generated this model in only 30 sec of Central Processing Unit (CPU) time, and the SURE 
program solved the model in 3 CPU sec. 
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Appendix B 

Analysis of PE Failures Per Cluster Over a 5-Year Mission 

of the number of spares needed over a 5-year mission. 
The simple ASSIST file given below models only PE failures and was used to get a rough estimate 

PROCS = 14; 
INPUT NE; 
TIME = 43800; 
LAMP = 5.1E-5; (* PE f a i l u r e  r a t e  ( includes i t s  l i n k )  *> 
LAMS = 5.lE-6; (* Spare f a i l u r e  rate *> 
SPACE = (NUM-PE); 
START = (NE*6); 
DEATHIF NUM-PE < PROCS; 

(* Five year mission time *I 

IF NUM-PE > 0 TRANTO NUM-PE=NUM_PE-l BY (PROCS*LAMP)+((NUM-PE-PROCS)*LAMS); 
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Appendix C 

Analysis of Intercluster Communication During Engagement 
The ASSIST file given below was used to get a rough estimate of the number of links needed 

for intercluster communication over the %-hour engagement mission. This model determines the 
probability of failure of the set of redundant intercluster links between two clusters. The failure 
probability of each intercluster link is modeled as the failure probability of the link, the two PE’s 
connected to it, and their two NE’S. Since the probability of failure of the intercluster network 
determined by this model includes some PE failures, adding the failure probability from this model to 
those obtained from the model described in appendix A would give a very conservative system-failure 
probability because PE failures would be counted multiple times. However, clearly the probability of 
system failure due only to intercluster failures must be less than the total system-failure probability, 
and so this model is useful for roughly estimating the number of redundant intercluster links needed. 

It would have been considerably more accurate to choose a specific interconnection structure and 
model the entire architecture with the actual failure behavior of PE’s connected to NE’S. However, 
this would have required many iterations to find an optimum interconnection strategy and would 
have resulted in very large Markov models that take hours to solve. It is much more practical to use 
very simple models during the first preliminary analysis. 

INPUT NL; 
TIME = 0.5; 
LAMP = 12.lE-5; 
LAMT = 10*LAMP; 

(* Half hour mission time *) 
(* Failure rate of link includes its 2 PES & their NEs *) 

SPACE = (NUML ,FAILED) ; 
START = (NL,O) ; 
DEATHIF FAILED = I; 
IF NUML > 2 TRANTO NUML = NUML-1 BY NUML*LAMP; 
IF NUML = 2 TRANTO NUML = NUML-1 BY 0.5*(LAMP+LAMT); 
IF NUML = 2 TRANTO FAILED = 1 BY 0.5*(LAMP+LAMT); 
IF NUML = 1 TRANTO FAILED = I BY LAMP+LAMT; 

(* C = 0.5 *) 
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Appendix D 

Analysis of Intercluster Communication Over a 5-Year Mission 
The ASSIST input file used to describe the failure behavior of intercluster links over a 5-year 

mission is given below. This file models the probability of degradation of the set of intercluster links 
between two clusters to below the quad redundancy needed for the Yz-hour engagement mission. 
This simple model makes a very conservative assumption that all the redundant links except for the 
four active ones are attached to cold spare PE’s on cold spare NE’S, and thus they have lower failure 
rates. 

INPUT NL; 
TIME = 43800; 
LAMP = 12.1E-5; 
LAMS = 12.lE-6; 
SPACE = (NUM-L); 
START = (NL); 
DEATHIF NUM-L < 4; 
IF NUM-L > 0 TRANTO NUM_L=NUM-L-l BY 4*LAMP + (NUM-L-4)*LAMS; 

(* Five year mission time *) 
(* Each includes the 2 PES, their NEs plus one link *) 
(* Failure rate for spare *> 

54 
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